Marissa Gee joined the Kenyon faculty in 2024, after completing a Ph.D. in applied mathematics at Cornell University. Her research focuses on applications of optimal control — the study of how to effectively influence a modeled system in order to achieve a desirable outcome. Her projects combine techniques from mathematical modeling, partial differential equations and numerical methods, and they are motivated by applications in robotics and ecology.

Gee is passionate about and fascinated by teaching and learning. She values active participation and experimentation in class and encourages students to view math as an exploratory process with more than one possible correct answer.

In her free time, Gee enjoys reading, choral music, knitting and taking her cat for walks.

Areas of Expertise

Optimal control; mathematical modeling; numerical methods

Education

2021 — Master of Science from Cornell University

2018 — Bachelor of Science from Harvey Mudd College

Courses Recently Taught

The first in a three-semester calculus sequence, this course covers the basic ideas of differential calculus. Differential calculus is concerned primarily with the fundamental problem of determining instantaneous rates of change. In this course, we study instantaneous rates of change from both a qualitative geometric and a quantitative analytic perspective. We cover in detail the underlying theory, techniques and applications of the derivative. The problem of anti-differentiation, identifying quantities given their rates of change, also is introduced. The course concludes by relating the process of anti-differentiation to the problem of finding the area beneath curves, thus providing an intuitive link between differential calculus and integral calculus. Those who have had a year of high school calculus but do not have Advanced Placement credit for MATH 111 should take the calculus placement exam to determine whether they are ready for MATH 112. Students who have 0.5 units of credit for calculus may not receive credit for MATH 111. This counts toward the core course requirement for the major. Prerequisite: solid grounding in algebra, trigonometry and elementary functions. Offered every semester.

The second in a three-semester calculus sequence, this course has two primary foci. The first is integration, including Riemann sums, techniques of integration, and numerical methods and applications of integration. This study leads into the analysis of differential equations by separation of variables, Euler's method and slope fields. The second focus is the notion of convergence, as manifested in improper integrals, and sequences and series, particularly Taylor series. This counts toward the core course requirement for the major. Prerequisite: MATH 111 or AP score of 4 or 5 on Calculus AB exam or an AB sub-score of 4 or 5 on the Calculus BC exam. Offered every semester.

This course introduces students to the concepts, techniques and power of mathematical modeling. Both deterministic and probabilistic models are explored, with examples taken from the social, physical and life sciences. Students engage cooperatively and individually in the formulation of mathematical models and in learning mathematical techniques used to investigate those models. This counts toward the computational/modeling/applied (column D) elective requirement for the major. Prerequisite: STAT 106 and MATH 224 or 258. Offered every other year.