Affiliated Departments & Programs
John Hofferberth joined Kenyon’s faculty in 2005. His research focuses on the chemical synthesis of naturally occurring organic molecules that are involved in insect communication. The program director of Kenyon’s Howard Hughes Medical Institute Inclusive Excellence Grant, Hofferberth is leading efforts to transform institutional structures and faculty practices to build Kenyon’s capacity for inclusion of all students.
Hofferberth is a winner of Kenyon’s Trustee Teaching Excellence Award.
Areas of Expertise
Organic chemistry, biochemistry and chemical ecology
Education
2002 — Doctor of Philosophy from The Ohio State University
1996 — Bachelor of Science from Miami University Oxford
Courses Recently Taught
This course provides a thorough introduction to the fundamental concepts, theories and methodologies of chemistry. Topics may include stoichiometry, theories of molecular structure and bonding, the periodic table, quantum theory, acid-base chemistry, chemical equilibria and thermodynamics. This course, or the equivalent, is required for the major. No prerequisite. Offered every fall semester.
This lecture-discussion course continues the introductory chemistry sequence started in CHEM 121. We explore the chemical principles of molecular structure, bonding, reactivity, electrochemistry, kinetics and intermolecular forces. Chemical principles are explored in the context of current issues in the study or application of chemistry. Prerequisite: CHEM 121 or 122. Offered every spring semester.
This lecture course offers a study of the chemical and physical properties of organic compounds. Theoretical principles are developed with particular emphasis on molecular structure and reaction mechanisms. The descriptive aspects of organic chemistry include strategies for synthesis and the study of compounds of biochemical interest. Prerequisite: grade of C+ or higher in both CHEM 124 and CHEM 126; or grade of C+ or higher in both CHEM 122 and CHEM 123. Offered every spring semester.
This course is a continuation of CHEM 231. This lecture course offers a study of the chemical and physical properties of organic compounds. Theoretical principles are developed with particular emphasis on molecular structure and reaction mechanisms. The descriptive aspects of organic chemistry include strategies for synthesis and the study of compounds of biochemical interest. This counts toward advanced course electives requirement for the major. Prerequisite: CHEM 231. Offered every fall semester.
This laboratory course introduces fundamental methods in organic chemistry research and complements the topics covered in the lecture course, CHEM 231. This is achieved by carrying out experiments and research projects involving topics such as isolation of a natural product, oxidation and reduction reactions, and reactions of alkenes. The techniques include liquid extraction, distillation, recrystallization and thin-layer and gas chromatography. Compounds are identified and assessed for purity by melting-point determination, refractometry, gas chromatography, and infrared and nuclear magnetic resonance spectroscopy. Appropriate record-keeping on laboratory notebooks and writing laboratory reports is emphasized. This course is required for the major. Prerequisite: CHEM 126; or CHEM 122 and 123. Corequisite: CHEM 231. Offered every spring semester.
This laboratory course extends and applies the techniques developed in CHEM 233 to more advanced experiments in organic synthesis including open-ended experiments derived from current research projects. A particular emphasis is placed on using chemistry databases, experimental design and planning, laboratory notebooks and record-keeping, analytical and preparative chromatography, advanced NMR techniques (2-D) and writing research laboratory reports. Upon successful completion of the two-course organic chemistry lab sequence (CHEM 233/234), students have the skills needed to thrive in a synthetic organic chemistry research laboratory. This counts towards the advanced lab electives requirement for the major. Prerequisite: CHEM 233. Corequisite: CHEM 232. Offered every fall semester.
This course is a study of the structure and function of biologically important compounds. Topics include proteins, enzymes, intermediary metabolism and electron transport with emphasis on thermodynamic and kinetic analysis of biochemical systems. Prerequisite: CHEM 232. Offered every spring semester.