Brad Hartlaub joined the Kenyon faculty in 1990. He is a nonparametric statistician and his research deals with rank-based tests for detecting interaction. He has published research articles on count or rank based statistical methods in the Journal of Nonparametric Statistics, The Canadian Journal of Statistics and Environmental and Ecological Statistics. He has served as the chief reader of the AP Statistics Program and is an active member of the American Statistical Association's Section on Statistical Education.
Brad was selected as a fellow of the American Statistical Association in 2006. He has served the College as chair of the Department of Mathematics, chair of the Division of Natural Sciences, a member of the Self Study Committee and a member of the Committee on Academic Standards. He has received research grants to support his work with undergraduate students from the Andrew W. Mellon Foundation and the Council on Undergraduate Research. His current project is a collaborative effort with students and faculty members in the departments of biology and mathematics and deals with modeling metabolic rates for Manduca sexta.
1992 — Doctor of Philosophy from The Ohio State University
1988 — Master of Arts from The Ohio State University
1986 — Bachelor of Arts from Millersville Univ Pennsylvania
Courses Recently Taught
This course provides a calculus-based introduction to probability. Topics include basic probability theory, random variables, discrete and continuous distributions, mathematical expectation, functions of random variables and asymptotic theory. This counts toward either a discrete/combinatorial (column C) or continuous/analytic (column B) elective requirement for the major. Prerequisite: MATH 213. Offered every fall.
This is a basic course in statistics. The topics covered are the nature of statistical reasoning, graphical and descriptive statistical methods, design of experiments, sampling methods, probability, probability distributions, sampling distributions, estimation and statistical inference. Confidence intervals and hypothesis tests for means and proportions are studied in the one- and two-sample settings. The course concludes with inference-regarding correlation, linear regression, chi-square tests for two-way tables and one-way ANOVA. Statistical software is used throughout the course, and students engage in a wide variety of hands-on projects. This counts toward the core course requirement for the major. Students with credit for STAT 116 cannot take STAT 106 for credit. No prerequisite. Offered every semester.
This course focuses on choosing, fitting, assessing and using statistical models. Simple linear regression, multiple regression, analysis of variance, general linear models, logistic regression and discrete data analysis provide the foundation for the course. Classical interference methods that rely on the normality of the error terms are thoroughly discussed, and general approaches for dealing with data where such conditions are not met are provided. For example, distribution-free techniques and computer-intensive methods, such as bootstrapping and permutation tests, are presented. Students use statistical software throughout the course to write and present statistical reports. The culminating project is a complete data analysis report for a real problem chosen by the student. The MATH 106–206 sequence provides a thorough foundation for statistical work in economics, psychology, biology, political science and many other fields. This counts toward the statistical/data science (column E) elective for the major. Prerequisite: STAT 106 or 116, or a score of 4 or 5 on the AP statistics exam. Offered every semester.
This course focuses on nonparametric and distribution-free statistical procedures. These procedures rely heavily on counting and ranking techniques. In the one- and two-sample settings, the sign, signed-rank and Mann-Whitney-Wilcoxon procedures are discussed. Correlation and one-way analysis of variance techniques also are investigated. A variety of special topics are used to wrap up the course, including bootstrapping, censored data, contingency tables and the two-way layout. The primary emphasis is on data analysis and the intuitive nature of nonparametric statistics. Illustrations come from real data sets, and students are asked to locate an interesting data set and prepare a report detailing an appropriate nonparametric analysis. This counts toward the statistical/data science (column E) elective for the major. Prerequisite: STAT 106 or 116, or a score of 4 or 5 on the AP statistics exam. Offered every other year.
This course provides a mathematical introduction to probability and statistics using R statistical software. The primary goal of the course is to learn and apply Monte-Carlo simulation techniques to a wide variety of problems. We focus on solving problems from a numerical point of view, with methods to complete numerical integration, root finding, curve fitting, variance reduction and optimization. Core knowledge of R and basic programming concepts are introduced. Case studies and projects are independently completed throughout the semester. This counts toward the statistical/data science (column E) elective for the major. Prerequisite: STAT 106 or STAT 116. Offered every other year.
Each offering of this course approaches the study of variability using a particular set of statistical tools (such as Bayesian Analysis, biostatistics, sports analytics, experimental design or statistical machine learning). Specific statistical methodology within a subfield of the discipline is examined. A large component of each offering involves intensive projects in which students are expected to determine which statistical methods are appropriate for a given setting before analyzing data. As part of these projects and daily activities, students use R to analyze data to make inferences about the population characteristics of interest. Additionally, written and oral communication are a regular part of the course. The course may be repeated for credit as long as the subfield is different. That is, students may receive credit for each specific subfield only once. This counts toward the statistical/data science (column E) elective for the major. Prerequisite: any STAT course at the 200 level or higher. Offered every spring.\nAdditional information for different subfields: https://www.kenyon.edu/academics/departments-and-majors/mathematics-statistics/academic-program-requirements/courses-in-statistics/stat-306-topics/
This course follows MATH 336 and introduces the mathematical theory of statistics. Topics include sampling distributions, order statistics, point estimation, maximum likelihood estimation, methods for comparing estimators, interval estimation, moment-generating functions, bivariate transformations, likelihood ratio tests and hypothesis testing. Computer simulations accompany and corroborate many of the theoretical results. Course methods often are applied to real data sets. This counts toward the statistical/data science (column E) elective for the major. Prerequisite: MATH 336. Offered every other spring.
Individual study is a privilege reserved for students who want to pursue a course of reading or complete a research project on a topic not regularly offered in the curriculum. It is intended to supplement, not take the place of, coursework. Individual study cannot be used to fulfill requirements for the major. Individual studies will earn 0.25-0.5 units of credit. To qualify, a student must identify a member of the mathematics department willing to direct the project. The professor, in consultation with the student, creates a tentative syllabus (including a list of readings and/or problems, goals and tasks) and describes in some detail the methods of assessment (e.g., problem sets to be submitted for evaluation biweekly; a 20-page research paper submitted at the course's end, with rough drafts due at given intervals; and so on). The department expects the student to meet regularly with the instructor for at least one hour per week. All standard enrollment/registration deadlines for regular college courses apply. Because students must enroll for individual studies by the end of the seventh class day of each semester, they should begin discussion of the proposed individual study by the semester before, so that there is time to devise the proposal and seek departmental approval. Permission of instructor and department chair required. Individual study courses may be counted as electives in the major, subject to consultation with and approval by the Department of Mathematics and Statistics. No prerequisite.
Individual study is a privilege reserved for students who want to pursue a course of reading or complete a research project on a topic not regularly offered in the curriculum. It is intended to supplement, not take the place of, coursework. Individual study cannot be used to fulfill requirements for the major. Individual studies will earn 0.25-0.5 units of credit. To qualify, a student must identify a member of the mathematics department willing to direct the project. The professor, in consultation with the student, creates a tentative syllabus (including a list of readings and/or problems, goals and tasks) and describes in some detail the methods of assessment (e.g., problem sets to be submitted for evaluation biweekly; a 20-page research paper submitted at the course's end, with rough drafts due at given intervals; and so on). The department expects the student to meet regularly with the instructor for at least one hour per week. All standard enrollment/registration deadlines for regular college courses apply. Because students must enroll for individual studies by the end of the seventh class day of each semester, they should begin discussion of the proposed individual study by the semester before, so that there is time to devise the proposal and seek departmental approval. Permission of instructor and department chair required. Individual study courses may be counted as electives in the major, subject to consultation with and approval by the Department of Mathematics and Statistics. No prerequisite.
Individual study is a privilege reserved for students who want to pursue a course of reading or complete a research project on a topic not regularly offered in the curriculum. It is intended to supplement, not take the place of, coursework. Individual study cannot be used to fulfill requirements for the major. Individual studies will earn 0.25-0.5 units of credit. To qualify, a student must identify a member of the mathematics department willing to direct the project. The professor, in consultation with the student, creates a tentative syllabus (including a list of readings and/or problems, goals and tasks) and describes in some detail the methods of assessment (e.g., problem sets to be submitted for evaluation biweekly; a 20-page research paper submitted at the course's end, with rough drafts due at given intervals; and so on). The department expects the student to meet regularly with the instructor for at least one hour per week. All standard enrollment/registration deadlines for regular college courses apply. Because students must enroll for individual studies by the end of the seventh class day of each semester, they should begin discussion of the proposed individual study by the semester before, so that there is time to devise the proposal and seek departmental approval. Permission of instructor and department chair required. Individual study courses may be counted as electives in the major, subject to consultation with and approval by the Department of Mathematics and Statistics. No prerequisite.
Individual study is a privilege reserved for students who want to pursue a course of reading or complete a research project on a topic not regularly offered in the curriculum. It is intended to supplement, not take the place of, coursework. Individual study cannot be used to fulfill requirements for the major. Individual studies will earn 0.25-0.5 units of credit. To qualify, a student must identify a member of the mathematics department willing to direct the project. The professor, in consultation with the student, creates a tentative syllabus (including a list of readings and/or problems, goals and tasks) and describes in some detail the methods of assessment (e.g., problem sets to be submitted for evaluation biweekly; a 20-page research paper submitted at the course's end, with rough drafts due at given intervals; and so on). The department expects the student to meet regularly with the instructor for at least one hour per week. All standard enrollment/registration deadlines for regular college courses apply. Because students must enroll for individual studies by the end of the seventh class day of each semester, they should begin discussion of the proposed individual study by the semester before, so that there is time to devise the proposal and seek departmental approval. Permission of instructor and department chair required. Individual study courses may be counted as electives in the major, subject to consultation with and approval by the Department of Mathematics and Statistics. No prerequisite.